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Abstract

A step towards a theory of consciousness would be to characterize the effect of consciousness on information processing. One
set of results suggests that the effect of consciousness is to interfere with computations that are optimally performed non-con-
sciously. Another set of results suggests that conscious, system 2 processing is the home of norm-compliant computation.
This is contrasted with system 1 processing, thought to be typically unconscious, which operates with useful but error-prone
heuristics. These results can be reconciled by separating out two different distinctions: between conscious and non-conscious
representations, on the one hand, and between automatic and deliberate processes, on the other. This pair of distinctions is
used to illuminate some existing experimental results and to resolve the puzzle about whether consciousness helps or hinders
accurate information processing. This way of resolving the puzzle shows the importance of another category, which we label
‘type 0 cognition’, characterized by automatic computational processes operating on non-conscious representations.
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Introduction

What is consciousness good for? What special kinds of cognition
does it enable? One prominent way of responding to this question
is to challenge the presupposition that consciousness improves
cognition - that consciousness is good for anything (Rosenthal
2008, see also Frith and Metzinger 2016). There are a range of ex-
periments showing that precise and well-adapted behaviour can
be produced without consciousness (Jacob and Jeannerod 2003;
Goodale and Milner 2004). Furthermore, there are many cases
where performance deteriorates when subjects become conscious
of what they are doing (Beilock et al. 2002). From this perspective
it can seem as if consciousness just gets in the way of the speed
and efficiency — the optimality — of non-conscious processing.

By contrast, researchers relying on ‘dual processing’ to explain
behaviour, often in the field of judgement and decision-making,
draw a different conclusion about consciousness. They agree that

automatic largely non-conscious type 1 (or system 1) processing
is fast and can be heuristically useful, but they also show that, in
a range of contexts, type 1 processing gets the wrong answer
(Tversky and Kahneman 1974; Evans and Stanovich 2013). It is
only with time and deliberate, conscious type 2 (or system 2) rea-
soning that subjects produce the correct or normative response
(Kahneman 2003). When type 2 processing is compromised by
cognitive load, subjects will fall into a range of type 1 errors like
the conjunction fallacy, anchoring and base rate neglect.

So which is it? Does consciousness get in the way of accurate
processing or facilitate it? If a subject becomes consciously
aware of what they are doing, are they more likely to get it right
or to get it wrong? In this article we resolve this seeming para-
dox by showing that different distinctions are in play in the two
literatures. What at first look like two opposing positions about
the function of consciousness, each supported by a substantial
body of experimental results, can in fact be reconciled.
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One distinction is about representations and the other is
about processes. The representations over which cognitive proc-
esses operate can be conscious or non-conscious. Cognitive
processes are another matter: they are computations from some
representations to others. The process occurs ‘over’ the repre-
sentations: cognitive processes occur through the unfolding of a
sequence of representations. The type 1/type 2 distinction picks
out two ways that cognitive processes can unfold (or, more
likely, a continuum between two extremes). The process can be
deliberately controlled and subject to cognitive load, or auto-
matic and insensitive to cognitive load. By contrast the con-
scious/non-conscious distinction picks out two ways that
representations can figure in cognition. They can be part of the
conscious mental life of the subject, or not.

The apparent paradox we started with is dispelled when this
distinction is made clear. Focusing on representations, there are
indeed a number of paradigms in which conscious representa-
tions lead to different behavioural results than non-conscious
representations, and in which a representation becoming con-
scious can lead to a departure from optimality. Focusing instead
on processes, there are results showing that automatic, type 1
processing can produce incorrect performance in circumstances
where, given more time or less cognitive load, subjects are able
to meet a normative standard by engaging in type 2 processing.
(Whether this is best theorized in terms of a distinction between
two different systems, rather than two modes of operation of
the same system, is a further question: Osman 2004; Kruglanski
and Gigerenzer 2011; Oaksford and Chater 2014.) In short, the
findings about conscious versus non-conscious representations
are compatible with the findings about type 1 versus type 2
processes.

Once we have diffused the seeming paradox using these two
distinctions it becomes clear we need a new category in our tax-
onomy. The type 1/type 2 distinction does not cover the whole
territory. We will call the new category ‘type 0’ cognition. In
type 2 cognition the input and output representations are con-
scious and the cognitive process that occurs over them is delib-
erate or controlled and susceptible to cognitive load. Most
examples of type 1 processing in the literature also involve con-
scious representations. Subjects are usually responding to a
consciously represented input (e.g. a mathematical question),
and are usually conscious of what they say or do in response.
What distinguishes type 1 from type 2 cognition is that the pro-
cess that occurs over these representations is fast, automatic
and relatively insensitive to cognitive load. To the extent that
type 1 processing is characterized as non-conscious, that is usu-
ally because the subject is not conscious of the process by which
they compute the output. The representations that make up the
input and output of a type 1 process are, however, typically con-
scious. So here we characterize type 1 cognition as consisting of
automatic processing of conscious representations.

Type 0 cognition combines both non-conscious representa-
tions and non-controlled processing. In type O cases the input
representations are not conscious and the cognitive processing
is automatic and insensitive to cognitive load. As we shall see, it
is important to distinguish type 0 cognition from the bulk of the
cases that have been given the label ‘type 1’ or ‘system 1’, be-
cause type 0 cognition has a different computational signature.

This article will make the case for picking out type 0 cogni-
tion as its own category. We show how various theoretical tan-
gles, including our initial paradox, are resolved when we keep
the two distinctions clear: the distinction between two types of
representations — conscious versus non-conscious - on the one
hand, and between two types of cognitive process - deliberate,

typically slow, serial and affected by cognitive load versus auto-
matic, typically fast, parallel and insensitive to cognitive load -
on the other hand. Section 2 defines the difference between
type 0 and type 1 cognition. Section 3 draws the contrast be-
tween type 1 and type 2 cognition. Section 4 puts these distinc-
tions to work to understand two sets of existing findings.

Conscious versus Non-conscious
Representations: Type 1 versus Type 0

What does consciousness facilitate?

We use ‘consciousness’ to mean both awareness and what-it’s-
like-ness (i.e. both access and phenomenal consciousness:
Block 2005). So a conscious representation forms part of a sub-
ject’s awareness in the sense that it is available for verbal report
and use by other consuming systems: reasoning, selecting tar-
gets for action, storage in episodic or semantic memory, and
perhaps other consuming systems at the personal level.
Representing consciously also has a subjective character for the
subject — it part of their phenomenal mental life.

There is plenty of evidence suggesting that consciousness,
or an attentional phenomenon closely related to consciousness,
is important for many forms of learning, memory and voluntary
control of behaviour. However, a leading strategy in scientific
research on consciousness is in search of something stronger:
tasks that can only be performed using conscious representa-
tions. For example, it has been variously claimed that con-
sciousness is required in order: to integrate or bind perceptual
features (Dehaene and Naccache 2001; Baars 2002; Tononi 2004);
to keep a representation online in the absence of stimulation
(Greenwald et al. 1996; Dehaene and Naccache 2001) or to inte-
grate motivational states with causal learning (Dickinson and
Balleine 2009).

The history of this enterprise is not encouraging. Almost all
proposed functions have been matched by plausible findings
where the effect is shown to be produced in the absence of con-
sciousness (Faivre et al. 2014; Soto et al. 2011 and Winkielman
et al. 2005, respectively). Certainly, there is no clear case of a
task for which consciousness is required. Disputes arise be-
cause of the intricacies of measuring consciousness and its ab-
sence - such that some researchers doubt that there is any non-
chance performance without consciousness (Newell and
Shanks 2014). So the case that there is actually any cognitive
processing of non-conscious representations is far from conclu-
sive (Phillips 2015).

In our view, it is entirely unsurprising that there is no clear
case of a task for which consciousness is definitively required. It
is misguided to think that the function of consciousness must
consist in tasks that can only be performed with conscious rep-
resentations. The motivation for that is the unobjectionable
thought that consciousness facilitates certain kinds of cognitive
process. But facilitation is not necessity. Consciousness may
make a range of tasks easier. It would be much more demand-
ing to expect any of these tasks to be strictly impossible to per-
form in any other way. When a particular task is performed in
reliance on conscious representations, that works because com-
putations take place over those representations so as to enable
the subject to perform the task. There seems to be no reason in
principle why the same computational steps could not be per-
formed on non-conscious representations so as to produce a
matching pattern of behaviour in the same task. In other words,
even if consciousness functions to facilitate certain kinds of
computations, and hence the performance of certain kinds of
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tasks, it would be odd - within a broadly computational/cogni-
tive neuroscientific approach to the mind - if it were absolutely
impossible to do the same task non-consciously.

The key idea here is facilitation. If consciousness has a dis-
tinctive function, that may indeed be because it is necessary for
certain operations; or it may instead lie in facilitating a range of
computational operations, each of which could in principle be
performed on non-conscious representations. An analogy is the
way that books can be arranged on a bookshelf. If they are
ordered by subject and author that makes it much easier to per-
form a range of tasks: finding a particular book; finding all books
on a particular subject; finding all books by a particular author;
etc. However, each of those operations can be performed on a
randomly ordered bookshelf. Similarly, we should be looking for
a range of tasks that all tend to be facilitated when the repre-
sentations involved are conscious. Finding that each of these
tasks can be performed non-consciously does not, by itself,
undermine the claim that consciousness facilitates the ability
to perform all of them. If a representation’s being conscious has
this kind of facilitatory effect, that is an important functional
role of consciousness.

Although facilitating some computations, a representation’s
being conscious may make other computations harder. So we
may find that some computations that are performed optimally
on non-conscious representations are performed sub-optimally
when the representations become conscious (Levine et al. 1996).
When an incoming representation is not conscious it may be
relatively easy to update all the representations within the
same informationally encapsulated module in a Bayes-optimal
way. If the same new information is represented consciously it
can potentially interact with everything else represented in any
of the agent’s cognitive systems, making it difficult or impos-
sible to compute a Bayesian update (Chater et al. 2006). So even
if consciousness facilitates some computations, it may make
others more difficult.

Type 0 cognition

Type 0 cognition is characterized by automatic processes occur-
ring over non-conscious representations. Models of reinforce-
ment learning show how automatic processes can produce
optimal behaviour in some domains. Subjects can learn how to
behave so as to harvest near-maximum rewards when the con-
tingencies between behaviour and rewards are probabilistic and
changeable (O’'Doherty et al. 2003). When presented with a situ-
ation, e.g. a pair of stimuli, subjects who have experienced a his-
tory of feedback on similar choices can decide which to choose
very rapidly, and do so near optimally. These learning processes
are automatic - they do not depend on the subject exercising
deliberate control and are relatively insensitive to cognitive
load (Otto et al. 2013). Making optimal choices in this way is
computation-light but learning-heavy (Dayan 2014). This is the
first of two examples of type 0 cognition that we discuss briefly
in this section. We go on to point to some evidence that con-
sciousness can impair the smooth operation of type 0 cognition.

We offered reinforcement learning as an example of an auto-
matic process that relies on a history of feedback in order to
make optimal choices in the present. If this kind of learning can
occur over non-conscious representations, that would make it a
case of type 0 cognition. And there is indeed good evidence that
instrumental conditioning can take place on stimuli which are
not consciously represented (Pessiglione et al. 2007, 2008). In
short, given sufficient learning history in a domain, type 0 cogni-
tion can generate adaptive or near-optimal behaviour.

Case for ‘type zero’ cognition | 3

The second example is motor control. In many circum-
stances people adjust their ongoing movement on the basis of
new information that arrives while they are executing an action
(Goodale et al. 1986; Fourneret and Jeannerod 1998; Schindler
et al. 2004). They do so in an optimal way using feedback control
(Wolpert and Landy 2012). Subjects also compensate for their
own visuomotor error in a near-optimal way (Zhang et al. 2015).

These rapid adjustments are made automatically, without
deliberate control (Pisella et al. 2000). The adjustments are so
rapid that it is highly unlikely that a representation of the new
target location has become conscious by the time the adjust-
ment is made. That is consistent with the finding that subjects
can adjust to a target moved during a saccade without being
aware that the target has moved (Fourneret and Jeannerod
1998). When subjects learn over repeated trials to adjust motor
output to compensate for an artificial force field (Thoroughman
and Shadmehr 2000), one kind of adjustment is also made auto-
matically and without the subject being conscious of the adjust-
ment (the slow implicit process in McDougle et al. 2015). There
being an effect of non-conscious representations on perceptuo-
motor control in this way is consistent with the finding that
perceptual learning about motion direction can occur without
the direction of motion presented being consciously repre-
sented (T. Watanabe et al. 2001). In short, fine-grained online
motor control rapidly performs complex computations over
non-conscious representations, computations that meet a nor-
mative criterion.

Thus, model-free reinforcement learning can generate opti-
mal decisions when making choices for rewards, and feedback
control can compute optimal action trajectories. In both of these
examples of type 0 cognition, non-conscious representation
goes hand-in-hand with correct performance. Furthermore,
when both systems make predictions about the same outcome,
there is evidence that their outputs are integrated in a way that
produces normatively appropriate behavioural output (O’Reilly
et al. 2013).

Type 0 cognition is likely to play a large role in several other
domains, for example in the rich inferences which occur auto-
matically and without consciousness in the course of percep-
tion, language comprehension and language production.

Any input is potentially relevant to where to reach and
whether to keep reaching. The fact that a colleague’s phone
rings may mean, by a subtle chain of reasoning, that I should
pick up the target object with the other hand. But the type 0
computations we have been discussing don’t make use of do-
main-general information. They are only performed on a very
limited subset of incoming information (e.g. about the location
and motion of the target) — information whose relevance to ac-
tion execution subjects will have been able to learn about in the
past. For example, the subjects in Pisella et al. (2000) performed
rapid corrections in response to changes in target location but
not in response to changes in target colour. The ‘automatic
pilot’ mechanism of perceptuomotor control appears to be un-
able to make adjustments to take account of relevant colour in-
formation. We hypothesize that type 0 cognition is poor at
integrating information from previously unconnected domains.

On the other hand, when representations become conscious
behaviour may be less accurate than that produced by type 0
cognition. Subjects viewing a hollow face have a conscious ex-
perience that it is a normal convex face and make judgements
about the location of small targets placed on the face accord-
ingly. However, their rapid reaching movements are correctly
targeted at the true location of the targets (i.e. further away
than conscious experience represents them to be: Kroliczak
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et al. 2006). In line with the evidence above that rapid reaching
movements are controlled by non-conscious representations of
the target, it seems that type 0 cognition is able to drive correct
performance in this context, while at the same time the judge-
ments made on the basis of conscious representations are in-
correct. There is also wider evidence that dorsal stream
representations controlling action execution are not conscious
(Jacob and Jeannerod 2003; Goodale and Milner 2004). The auto-
matic post-error slowing observed in skilled typists may also be
the result of type 0 cognition - it is independent at least of con-
scious visual representations of the letters produced (Logan and
Crump 2010).

Similarly, consciousness or conscious attention can interfere
with the smooth execution of actions controlled by type 0 cogni-
tion (Jueptner et al. 1997). For some high level sporting skills,
the performance of expert practitioners is impaired when they
attend more to what they are doing (Beilock et al. 2002). Motor
skill learning can also be impaired by conscious reflection
(Fletcher et al. 2005; McKay et al. 2015). In these cases conscious
attention to aspects of the task appears to increase the process-
ing demands and to lead to slower and less accurate perform-
ance. This is comparable to the way that performance on a task
is impaired when the stimulus set or response set is increased
(Hick 1952).

In short, type 0 cognition performs rapid and accurate com-
putations on a limited range of information. It avoids the costs
in speed and accuracy that would follow from bringing a wider
range of information to bear on performing a task.

Type 1 cognition

Type 1 cognition is characterized by automatic, load-insensitive
processing of consciously represented inputs; outputs are typic-
ally also conscious. Experiments contrasting conscious with
non-conscious processing suggest that processing in perceptual
areas of the brain is not sufficient for a representation of a
stimulus to become conscious in our sense. Conscious repre-
sentation goes with activation of prefrontal cortex (particularly
dorsolateral prefrontal cortex), usually together with inferior
parietal cortex and anterior cingulate cortex (Dehaene et al.
2014). Our hypothesis is that, compared with type 0 cognition,
consciousness facilitates the processing together of representa-
tions drawn from domains that have not previously been exten-
sively associated.

It is hardly surprising that consciousness allows representa-
tions from previously unconnected domains to be integrated for
computational processing, since by ‘conscious’ we mean (in
part) access conscious. Access conscious representations are
available to a range of personal-level consuming systems (ver-
bal report, goal-directed reasoning, episodic memory storage,
etc.). That is not equivalent to making information globally
available, which may be a wider form of availability (e.g. to sub-
personal systems), but our definition does require conscious
representations to be reasonably widely available. A representa-
tion encapsulated in a domain-specific module, inaccessible to
reasoning or verbal report, does not count as conscious as we
are using the term. But nor would processing of a representa-
tion by deliberate reasoning on its own make a representation
conscious, if that representation were not globally available.

Although some have claimed that consciousness is necessary
for information integration (Singer 1998; Tononi 2008), the dis-
cussion in the section ‘What does consciousness facilitate?’
suggests that we should consider a more modest hypothesis:
that consciousness facilitates information integration. And it

does indeed appear that the necessity claim is too strong - mul-
tisensory integration can occur between subliminally presented
stimuli (Faivre et al. 2014). However in the Faivre et al. (2014)
paradigm, integration of non-conscious representations only
occurred when participants had undergone previous conscious
training on stimuli of the same kind. Prior consciousness
thereby facilitated information integration. Indeed, it remains
empirically open that, in the absence of the opportunity for ex-
tensive prior learning, people can only integrate non-conscious
representations that have previously been associated con-
sciously (Mudrik et al. 2014).

The role of consciousness in facilitating information integra-
tion can be seen in several paradigms in which local regularities
are registered unconsciously but global regularities are only de-
tected when stimuli are consciously represented. For example,
subjects can extract a global pattern in incoming speech sounds
when they are conscious (the fact that the sequence ‘aaaaB’ is
repeated - Strauss et al. 2015). Sensitivity to violations of the
global pattern is abolished in sleeping subjects, although sensi-
tivity to violation of a local pattern remains (e.g. when a ‘B’
occurs in the sequence ‘aaaaB’: ‘passive sensory response adap-
tation’). Similarly, trace conditioning was abolished in one
group of patients with disorders of consciousness; while delay
conditioning, which is more local, was preserved (Bekinschtein
et al. 2009).

A consequence of reduced informational encapsulation is
that computations become more onerous. Bayesian inferences
which can be performed in real time on a limited set of data can
become computationally intractable as the range of information
to be taken into account increases (Chater et al. 2006).
Sometimes being able to behave even approximately correctly
may require cognition to take account of information from sep-
arate domains (domains not experienced together much in the
subject’s learning history). Consciousness may allow such pro-
cessing, but the computational complexity of doing so makes it
more likely that performance will be slow or incorrect.

So consciousness makes representations available to a wider
range of processing, and processing that occurs over conscious
representations takes a potentially wider range of representa-
tions as input. To reduce the resulting computational demands,
the amount of information consciously represented about each
stimulus or event may be reduced (e.g. Hillis et al. 2002).

For example, a situation that is non-consciously represented
as a probability distribution over a range of possible values may
collapse into a simpler representation when represented con-
sciously (Stocker and Simoncelli 2008), e.g. of just a single value,
or of a single value plus confidence. Stocker and Simoncelli
(2008) found that once subjects had consciously decided that a
stimulus was in one half of the screen, they effectively dis-
carded probability information about the other half, cutting
down the hypothesis space which was operative for subsequent
decisions (see also Akaishi et al. 2014; Fischer and Whitney
2014). Along the same lines, Marcel (1980) found that ambiguous
words presented unconsciously primed both meanings of the
word, whereas consciously presented ambiguous words only
primed the meaning that was consistent with prior context. In a
similar way but at the neural level, Niv et al. (2015) found that a
neural attentional control network did not represent all the per-
ceptual dimensions presented to the subject, but only a variable
task-relevant subset. (Interestingly, the reinforcement learning
model that best explained subjects’ behaviour continued to in-
clude all nine available dimensions, suggesting that model-free
reinforcement learning is a type 0 process that proceeds - in its
limited way - without cutting down the representational space.)
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In all of these cases a stimulus’s being represented consciously,
while making information about the stimulus available more
widely, also goes along with a decrease in the amount of infor-
mation being represented about the stimulus.

In short, type 1 cognition occurs over conscious representa-
tions, which has a benefit and also a cost. The benefit is access
to a wider range of information and the ability to put together
information without extensive prior experience. The cost is that
optimal calculations may become computationally intractable,
calling for a reduction in the amount of information carried
and/or simplification of the processing being carried out.

Automatic versus Deliberately Controlled
Processes: Type 1 versus Type 2

Type 1 cognition again

We saw in the last section that consciousness, which character-
izes the representations involved in type 1 cognition, has com-
putational costs. We suggested that this is sometimes dealt
with by simplifying the computations to be performed. For ex-
ample, rather than computing a full Bayesian belief update to
take account of a new piece of information, heuristics may
come into play. When heuristics are appropriate to the domain,
these are the ‘simple heuristics that make us smart’ (Gigerenzer
and Todd 1999) long thought to be characteristic of type 1 pro-
cessing. But heuristics can of course go wrong. In such circum-
stances the greater time available to type 2 processing may be
needed in order to compute the right answer.

Studies of the cognitive reflection test (Frederick 2005) show
that people often use intuitive heuristics that produce the
wrong answer to simple mathematical questions. (E.g. ‘A bat
and a ball cost $1.10 in total. The bat costs $1 more than the
ball. How much does the ball cost?’ — the intuitive answer, 10
cents, is incorrect.) In realistic everyday settings subjects’ priors
appear to be sensitive and appropriate to varying contexts (e.g.
cinema or cookery: Griffiths and Tenenbaum 2006), but type 1
cognition may get the wrong answer by applying priors that are
inappropriate to the task domain (Fang et al. 2011). Conversely,
in other circumstances the heuristics deployed in type 1 cogni-
tion get the correct answer where general purpose type 2 rea-
soning does not (Goldstein and Gigerenzer 1999; Gigerenzer and
Sturm 2012).

In short, the heuristics and biases that characterize type 1
cognition are in part a response to the additional computational
demands that come with conscious representation. In some but
not all cases, given more time to solve the problem, deliberate
reasoning is able to produce the correct answer where auto-
matic reasoning does not (Kahneman 2003).

Type 2 cognition

Type 2 cognition is characterized by deliberate, non-automatic
processing of conscious representations. It is sensitive to cogni-
tive load: type 2 processes interfere with one another. Type 2
cognition operates on conscious representations, typically in
series, over a longer timescale than type 1 cognition. It can over-
come some of the computational limitations of type 1 cognition,
piecemeal, while retaining the advantage of being able to inte-
grate information from previously unconnected domains. It is
computation-heavy and learning-light: with its extended pro-
cessing time, type 2 cognition can compute the correct answer
or generate optimal actions without the benefit of extensive
prior experience in a domain.

Case for ‘type zero’ cognition | 5

Deliberate reasoning tasks engage a large array of brain
areas (Goel 2007), including the prefrontal and parietal areas
mentioned above as associated with conscious representation.
Examining deliberate reasoning of specific kinds brings out dif-
ferences from the conscious-non-conscious contrast, with a left
temporal lobe system involved in belief-based reasoning, and a
bilateral parietal lobe system involved in logical or belief-neu-
tral reasoning (Goel and Dolan 2003). The effect of increasing
cognitive load also has a different neural signature. Cognitive
load in general modulates the activity of superior parietal lobule
and intraparietal sulcus bilaterally, and particularly of the right
inferior frontal junction (Vergauwe et al. 2015). Thus, neural
data are consistent with there being an important functional
difference between our two distinctions (conscious-uncon-
scious and automatic-deliberate).

One task that relies on type 2 cognition is being able to resist
the automatic stem completion effect. Subjects are presented
with a word stem and instructed to complete it in a way that
differs from a prior masked word prime (e.g. if the prime is
‘table’ and the stem is ‘tab’ then ‘taboo’ would be a correct an-
swer; ‘table’ would be incorrect). There is a tendency to com-
plete the stem with the primed word. Subjects are able
successfully to resist this tendency only if the prime was con-
sciously represented (Debner and Jacoby 1994). This ability is
compromised by cognitive load (Jacoby et al. 1993). Thus, suc-
cessful performance of this task depends on type 2 cognition.

A second example is one of the two kinds of perceptual
learning discovered by Schwiedrzik et al. (2011). They demon-
strated two ways in which prior exposure to shapes can result
in improved perceptual sensitivity. One kind of improvement
does not require the stimuli to be consciously represented and
occurs only in the retinotopic area in which they are presented.
A second perceptual learning effect transfers to other retino-
topic locations but only occurs when the stimuli are consciously
represented. In similar perceptual learning tasks where there is
a concurrent cognitive load (a letter identification task), im-
provements in sensitivity do not transfer to other retinotopic lo-
cations (Karni and Sagi 1991; see also K. Watanabe et al. 2006).
Thus, the second type of perceptual learning in Schwiedrzik
et al. (2011) is likely to rely on type 2 cognition whereas the first
can occur with non-conscious stimuli in type 0 cognition.

Endogenous attention also seems to depend on type 2 cogni-
tion. It is susceptible to cognitive load (Jonides 1981). By contrast
exogenous attention is relatively insensitive to cognitive load
(Yantis and Jonides 1984) and can be driven by non-conscious
stimuli (McCormick 1997). Those are then cases of type 0 cogni-
tion. Attention can affect the way the automatic processes of
type 0 cognition are constrained to unfold (Naccache et al.
2002), as can other top-down effects (Yantis and Jonides 1990).

Importantly, type 2 cognition also allows deliberate product-
ive language (speech), enabling an agent to select information
to be communicated socially. For example, information broad-
cast deliberately as a result of type 2 metacognition may play an
important role in joint action (Shea et al. 2014). It has recently
been suggested that conscious representations of a thinker’s
own agency, in particular the capacity to anticipate the regret
that may be the result of performing an action, exemplify an
important function of consciousness (Frith and Metzinger 2016).
That too may be an important way that consciousness facili-
tates joint behaviour.

Deliberation is an important form of collective behaviour.
When people communicate about a problem, they can often
solve it together in a way that overcomes the limitations of indi-
vidual type 1 cognition (Mercier and Sperber 2011; Maciejovsky
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et al. 2013). Since type 2 cognitive processes typically take place
over a series of conscious representations, people can report
about the steps involved (Ericsson 2006), and so can share ex-
pertise with others; whereas the intermediate steps of type 1
cognitive processes are usually opaque to the thinker (Nisbett
and Wilson 1977; Berry and Broadbent 1984).

The distinction we draw between type 1 cognition and type 2
cognition has much in common with standard dual process ac-
counts (system 1/system 2), except that the way we deal with
consciousness is importantly different. System 1 processes
have long been characterized as unconscious, and that remains
a typical attribute even when it is not taken to be a defining fea-
ture (Evans and Stanovich 2013). As we characterize type 1 cog-
nition, it takes conscious representations as input, and typically
issues in conscious representations as output. It is our type 0
cognition that operates on non-conscious representations,
using processing that has the features typically associated with
system 1 (fast, automatic, load-insensitive, etc.).

Since our main disagreement with dual process theories
concerns system 1, our type 2 cognition is very like standard
views of system 2 processing. However, we do not assume that
type 1 and type 2 are different systems or that they draw on
qualitatively different kinds of cognitive processing. They may
do, or they may instead reflect two poles of a continuum
characterizing the way a single cognitive process can operate
under more or less pressure.

Type 1 cognition and type 2 cognition deal in different ways
with the demands imposed by the un-encapsulated nature of
conscious representations. Type 1 processing uses cues and
heuristics that enable rapid computations whereas type 2 cogni-
tion uses more time to deploy the more demanding and typic-
ally serial methods of general purpose reasoning. In some
contexts a heuristic may outperform general purpose reasoning
in accuracy as well as speed (Gigerenzer and Sturm 2012); in
others the heuristic fails and type 2 cognition is needed to pro-
duce correct or norm-compliant behaviour.

The Distinctions Applied to Existing Findings
Model-based and model-free decision-making

Patterns of behaviour that have been learnt instrumentally in
response to reward feedback have long been known to divide
into goal-directed behaviour, which is immediately sensitive to
the devaluation of an outcome, and habit-based behaviour,
which is not (Dickinson and Balleine 1994, in non-human ani-
mals). Frith et al. (1992) found early evidence that the distinc-
tion is at work in humans: learning the behavioural rule needed
to obtain a reward uses a separate system from learning the val-
ues of objects or stimuli. More recently, model-based reinforce-
ment learning has been proposed to account for goal-directed
behaviour and model-free reinforcement learning (discussed
above) to account for habitual behaviour (Dayan 2014).
Model-based mechanisms learn about the connections be-
tween actions and outcomes and encode information about the
causal structure of a task. Model-free mechanisms simply learn
values for actions in each world state. In many settings this
calls for considerable prior experience with the task, but makes
it very straightforward to compute behavioural choices. Given a
model of the situation, it is more complicated to calculate how
to behave. For example, when the task is to make five binary
choices in series to obtain a reward (e.g. in navigating around a
maze) there are 32 possible sequences to consider. Subjects
sometimes simplify the computation by reducing the problem

space, cutting out some branches of the decision tree from con-
sideration (‘pruning’), which can lead them to overlook the opti-
mal sequence of choices (Huys et al. 2012).

We noted above that model-free reinforcement learning can
take place on non-conscious representations. In those circum-
stances model-free learning is an instance of type 0 cognition. A
rapid change in the stimulus-response mapping, on the other
hand, seems to require that the stimuli are represented con-
sciously (Pessiglione et al. 2011). These results are complicated
by the fact that satiety has an effect on overall motivation,
which will also affect behaviour driven by the model-free sys-
tem. Ziauddeen et al. (2012) found that the overall level of mo-
tivation generated by a non-conscious stimulus (cumulative
grip strength) is modulated by satiety in a food-specific way.
They did not show that the stimulus-response mapping - which
action is performed for each stimulus - activated by non-con-
scious stimuli is immediately modulated by reward devaluation
(satiety).

Fear conditioning shows a similar signature, with two differ-
ent systems at work. Subjects can be conditioned by electric
shocks to acquire a fear reaction in response to stimuli repre-
sented non-consciously (Olsson and Phelps 2004). However, a
verbal instruction that certain stimuli will produce a shock is
only effective in producing a fear response when the stimulus is
represented consciously (Olsson and Phelps 2004). (Cf.
Pessiglione et al. (2011), although that effect may be due to the
effect of subliminal stimuli on overall motivation.) So goal-dir-
ected learning and instructed rules seem to be beyond the reach
of type 0 cognition.

Both the model-free and the model-based systems are at
work in many reward-learning contexts (McNamee et al. 2015),
with their relative reliability affecting the extent to which the
model-based system gets control of behaviour (Donoso et al.
2014; Gershman et al. 2014; Lee et al. 2014). Cognitive load in-
creases the extent to which a subject’s choice is driven by the
model-free system (Otto et al. 2013). Individual differences in
how much subjects exercise cognitive control in standard tasks
predict the extent to which their choices are model-based in a
reinforcement learning task (Otto et al. 2014). So it appears that
model-based learning relies on type 2 cognition.

Interestingly, Economides et al. (2015) found that with exten-
sive prior experience of task, model-based reasoning about
what to choose becomes less susceptible to cognitive load (al-
though it remains possible that the trained subjects switched to
a different, non-model-based strategy, or that the effect of the
training was to make the concurrent numerical Stroop task less
load-inducing, cp. Flaudias and Llorca 2014). More generally,
acting on social values seems to involve type 2 cognition: in the
ultimatum game cognitive load makes subjects behave more in
accordance with their personality type (Haruno et al. 2014).

Experiments on ego depletion and cognitive effort may also
illuminate the extent to which type 2 cognition is able to influ-
ence behaviour. The relative influence of the model-based and
model-free learning systems on behaviour, depending on their
respective reliability, reflects a cost-benefit trade off. Similarly,
the opportunity cost of devoting type 2 cognition to a problem
should affect our willingness to rely on it. The feeling of cogni-
tive effort accompanying some tasks may reflect that opportun-
ity cost (Westbrook and Braver 2015). Thus, subjects given the
suggestion that a strenuous mental task will be energizing
showed less of an interference effect in a subsequent Stroop
task (a standard measure of ego depletion) (Job et al. 2010). The
effects of beliefs about free will may work in a similar way.
Subjects given messages suggesting there is no free will show
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reduced preconscious motor preparation (Rigoni et al. 2011) and
reduced intentional inhibition of a prepotent response (Rigoni
et al. 2012). This may work by inducing subjects to reduce their
estimate of the efficacy or reliability of type 2 cognitive proc-
esses, thus reducing their effect on behaviour.

In this section, we have contrasted model-based with
model-free learning, briefly mentioning three other categories
related to the model-based system (deploying a rule, exercising
mental effort, exercising cognitive control). We argued that
model-based decision-making depends on type 2 cognition
whereas model-free decision-making can be performed by type
0 cognition.

Confidence judgements

Confidence judgements as studied in cognitive psychology are
found to be an only moderately reliable predictor of the sub-
ject’s accuracy in a task (Koriat 2012). By contrast, cognitive
neuroscience often finds neural signals of confidence that are
highly predictive of performance (Kepecs et al. 2008; Kiani and
Shadlen 2009). This discrepancy is explicable if different cogni-
tive systems are at work in the two cases. Internal measures of
confidence can be based directly on features of the evidence
used to make a decision or on the variance in a perceptual sig-
nal (Yeung and Summerfield 2012). Such signals can feed dir-
ectly into the automatic computations of type O or type 1
cognition (e.g. Ernst and Banks 2002). Since noise is the main
source of inaccuracy in these paradigms, it is unsurprising that
confidence signals based on noise are good predictors of accur-
ate performance.

By contrast the verbal confidence judgements elicited in cog-
nitive psychological work on metacognition tend to be inferred
from consciously represented cues like similarity and fluency
(Thompson et al. 2011; Koriat 2012). These cues are relied on to
form a judgement as to how likely it is that the type 1 heuristic
used to solve a problem will get it right. Since the cues are only
indirect and approximate indicators of likely accuracy, confi-
dence judgements based on them are less reliable. Vlassova
et al. (2014) found that subjects produce explicit metacognitive
reports, as assessed by meta-d’, only on the basis of consciously
represented aspects of a stimulus. Unconsciously represented
information had an effect in facilitating task performance but
without affecting meta-d’. This suggests that explicit reports of
confidence depend on type 2 cognition.

Conclusion

We started by asking what consciousness is good for — what
kinds of cognition does it enable? To return to that question:
does consciousness help us get things right or does it make us
get them wrong? The article argues that we should divide that
question into two separate questions, one about processes (de-
liberate vs. automatic) and the other about representations
(conscious vs. non-conscious). In familiar domains, automatic
processing of non-conscious representations can generate im-
pressively near-optimal performance (type 0 cognition). A repre-
sentation’s being conscious can facilitate some computations
that are otherwise difficult, for example by allowing informa-
tion to be integrated from domains not previously encountered
together. However, that also makes the computations less tract-
able, which can require computational shortcuts or heuristics,
which in turn can lead to incorrect performance when relied on
outside the context they were designed for (type 1 cognition).
Those limitations can be overcome in some cases by our
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limited-capacity ability to engage in step-by-step deliberate rea-
soning (type 2 cognition).

Two distinctions that have often been run together using the
conscious-unconscious contrast can usefully be separated, giv-
ing us a more accurate way of dividing up existing experimental
results. However, a 2 x 2 distinction generates four possibilities,
and we have only discussed three (type 0, 1 and 2 cognition: see
Table 1). What of the fourth box? This would be the home of de-
liberate processes acting on non-conscious representations. It
seems to us that there may well be no type of cognition that fits
in this box. If so, that is an important discovery about the nature
of consciousness.

From one perspective, it is unsurprising if deliberate reason-
ing cannot act on non-conscious representations. We defined
consciousness as requiring access consciousness, i.e. the avail-
ability of a representation to verbal report and other ‘consuming
systems’ of the whole person, like a person’s capacity for delib-
erate reasoning. So consciousness in our sense implies avail-
ability to deliberate reasoning. That definitional point does not
alone secure the converse: that deliberate reasoning can only be
performed on conscious representations. So that would be a
substantive discovery. Furthermore, it is far from obvious that
cognitive processes performed on subliminal stimuli should al-
ways be invulnerable to cognitive load. Nor that processing of
subliminal stimuli should exert no cognitive load. If those pre-
dictions turn out to be confirmed empirically, then we will have
discovered that the connection between deliberate reasoning
and consciousness is remarkably tight. (Which may in turn ex-
plain why theorists have tended to run them together.)

We should distinguish two different reasons why the fourth
box may be empty, corresponding to two strengths of claim
about the function of consciousness: that it facilitates or is ne-
cessary for certain computations (see section: ‘What does con-
sciousness facilitate?’). The first option is that there are few
cases of deliberate reasoning on non-conscious representations
because global broadcast has a facilitatory effect. Without a
dedicated input domain of its own, deliberate reasoning tends
only to take place on globally broadcast representations.
Facilitation is compatible with it being possible for deliberate
reasoning to take place over non-conscious representations (cp.
Soto et al. 2011). Being processed by deliberate reasoning is not
on its own sufficient to render a representation conscious, since
consciousness requires that the representation be globally
available.

The second option is that consciousness is indeed necessary
for deliberate reasoning. One reason why there could be a con-
stitutive connection between conscious representation and de-
liberate reasoning is if deliberate reasoning is constituted by a
series of intermediate steps where each representation that
concludes one step and starts the next step is represented con-
sciously. Each step, taken alone, could be automatic, in which
case it would be of type 1. Type 2 cognition would then be con-
stituted by a series of steps of type 1. The effect of load could be
due to the limited capacity of consciousness, rather than

Table 1. Types of cognition located by reference to the two distinc-
tions discussed in the text

Processing

Automatic Deliberate

Representations Non-conscious Type 0 cognition ?
Conscious Type 1 cognition Type 2 cognition
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because of an impact on the performance of any of the auto-
matic steps. On this picture it is because only a limited amount
of information can be represented consciously at any one time
that type 2 cognitive processes are affected by cognitive load.

It is an open empirical question whether cases in the fourth
box are merely rare or missing entirely. In any event, the pau-
city of reports of load-sensitive, deliberate reasoning taking
place over non-conscious representations suggests that there is
a tight connection of some kind between deliberate reasoning
and consciousness.

While there may be a tight connection when we are dealing
with deliberate processing, this article has shown that there are
strong reasons to think that automatic processing divides into
two importantly different kinds: that performed on conscious
representations (type 1 cognition) and that performed on non-
conscious representations (type O cognition). Recognizing this
difference not only allows for a clearer understanding of cogni-
tive processes; it also allows us to see more clearly what the ef-
fect of consciousness on cognitive processes is — which is one
small step towards constructing a theory of consciousness.
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